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Abstract

The data available to meteorologists is growing steadily and classical numerical weather

prediction is reaching its limits to derive even more knowledge from it. This study focuses

on applying data-driven deep learning methodologies to the field of weather forecasting,

specifically air temperature over Europe. A future frame prediction model from the computer

vision field is trained with the three input variables air temperature, surface pressure, and the

500 hPa geopotential in order to predict the air temperature itself. Future frame prediction

models generate the next frame(s) from a given number of preceding frames. This challenge

shows striking similarities to weather forecasting as both fields are dealing with a spatio-

temporal forecasting problem. The idea is that a suitable deep learning model is able to learn

the time-dependent transport patterns of the air temperature near the ground to generate

predictions for the next hour(s). The experiments show that the model can make better

hourly and even several-hour predictions than the persistence assumption. Contrary to the

assumption that a greater variety of data provides better results, the experiments show that

fewer variables provide better results. Essential for the application of future frame prediction

models to weather forecasting is the integration of prior physical knowledge, especially for

the data preparation, the selection and training of a model and its evaluation.
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1 Introduction

Mankind has always striven to better understand and predict the world. This is especially

true for weather predictions, which have experienced a remarkable success story over the past

decades (Bauer, Thorpe, & Brunet, 2015). The motivation to predict the weather is both

intrinsic and extrinsic. On the one hand, there is the human drive to grasp everything and on

the other hand, there is the competitive advantage that successful weather forecasts entail,

for instance in industry, agriculture, or military.

Weather predictions have greatly improved through (i) the integration of advanced theory

in the numerical weather prediction (NWP) centers, (ii) a richer range of data in terms of

quantity, variety and quality, (iii) observational systems and their improved and increased

assimilation of data and finally, (iv) the rapidly increased computational power (Reichstein

et al., 2019). Nonetheless, our capabilities to collect the data exceeds by far our capabilities

to process and understand them. This implies that our ability to make predictions has not

increased to the same extent that our ability to collect data in recent decades has. However,

recent advances in machine learning offer new opportunities to expand our knowledge of the

weather system. These promising approaches need to be further developed within the field

of geo-scientific analysis, especially within the spatio-temporal context.

In the past, machine learning approaches were divided into spatial and sequence learning,

for instance object classification and speech recognition. Currently, there is great interest in

combining these two fields, especially for future frame prediction from the field of computer

vision (CV). Based on a number of preceding frames, for example from a video of a driving car,

a deep learning model predicts the following frames for the sequence in the future (Lotter,

Kreiman, & Cox, 2016). This challenge shows striking similarities to many dynamic geo-

scientific problems, such as weather forecasting. Both future frame prediction and weather

forecasts are dealing with a spatio-temporal forecasting problem. Image sequences of weather

maps generally exhibit similar motion changes from one hour to the next. Within the new

field of future frame prediction, a small group of researchers has therefore been working on

applying this method to weather forecasts. First successful applications already exist with

rain and temperature forecasts (Bihlo, 2019; Shi et al., 2017; de Bezenac, Pajot, & Gallinari,

2017).

The aim of this study is to provide a comprehensive insight into deep learning methods

of future frame prediction and their application to weather forecasting. In particular, the

potential of deep neural networks for the prediction of air temperature over Europe will be
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investigated by including more information in the input than previous studies have used. In

addition to air temperature, surface pressure and the 500 hPa geopotential will be used to

predict the air temperature itself. Different configurations will be tested and compared.

The study is structured as follows: Section 2 provides the theoretical background of

different neural networks which are required for predicting future frames of videos. Section

3 presents selected literature covering future frame models, especially the ones dealing with

weather forecasting. The study setup in Section 4 explains the data and the data extraction

process and the model architecture. Section 5 describes the experiments and evaluates the

results. Finally, in Section 6 the selected model and the results are critically discussed and

Section 7 concludes the study with a summary of the results and an outlook for future

research.

2 Background

This section aims to provide the basic concepts behind the models that generate future frame

predictions. The focus lies on the machine learning algorithms that are used in the adapted

PredNet model for this study (Lotter et al., 2016). The intuitive idea behind predicting

future frames by a given number of preceding frames is the combination of a convolutional

neural network (CNN) in order to capture the spatial information and a recurrent neural

network (RNN) to capture the temporal information.

2.1 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are used for processing sequential data (Rumelhart,

Hinton, Williams, et al., 1988). In comparison to feed-forward neural networks, RNNs are

utilizing cyclic information by allowing connections between neurons within the same layer or

even backwards. Figure 2 illustrates typical recurrent connections, where V shows a recurrent

connection between a hidden unit and W shows a recurrent connection from one output from

a hidden unit to another hidden unit at the next time step. This enables information to

persist through several time steps and allows sequence learning.

However, a drawback of RNNs is dealing with information over a longer period of time

which might lead to the vanishing and exploding gradient problem (Bengio, Simard, Frasconi,

et al., 1994). When facing the vanishing gradient problem the weights of the network will

not be updated properly as the gradient becomes vanishingly small. The earlier the weights

in the network reside, the more terms are going to be included in the product to calculate
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Figure 2: Exemplified recurrent connections in a RNN. Adapted from Goodfellow, Bengio,

& Courville (2016)

the gradient. And the more terms that are less than one are multiplied, the quicker the

gradient is going to vanish. As the weights get proportionally updated with the gradient and

the gradient is vanishingly small, this update is going to be vanishingly small as well. These

barely updated or even stuck weights cannot account to reduce the loss and therefore affect

the ability of the network to learn. The opposite applies for exploding gradients. Updates

of weights move in such huge steps that the optimal value cannot be achieved, because the

proportion of by which the weights become updated is just too large (Goodfellow, Bengio, &

Courville, 2016). Hochreiter (1997) encountered these problems by extending the RNN, as

explained in the subsequent subsection.

2.2 Long Short-Term Memory (LSTM)

In order to overcome the vanishing and exploding gradient problem Hochreiter (1997) intro-

duced long short-term memory (LSTM) or long short-term memory cells (LSTMs). LSTM

is a particular type of RNN but with more complex so called memory cells. These memory

cells contain gates that can regulate the flow of information and can learn which data in a

sequence is important to keep or forget. By doing that it learns to use relevant information

to make predictions. LSTM can be found in speech recognition, speech synthesis and text

generation.

Figure 2.2 shows a LSTM cell. The core concept of LSTM is the cell state (Ct), which

is the upper horizontal line. The cell state contains a current set of information at every

time step and information can be added or removed by the gates. Gates consist of a sigmoid

neural net layer (σ) and a point-wise multiplication operation (x). An output of the sigmoid

neural layer of one means that everything goes through, and zero that nothing goes through.

3
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Figure 3: A LSTM cell. Adapted from Olah (2015)

There are three of these gates in a LSTM cell. The first gate works as the forget gate and

decides which information can be thrown away (ft). The next gate, the input gate decides

which value to update (it). Subsequently, a tanh layer generates new candidate values that

can be added to the cell state (C̃t). The cell state gets updated by multiplying the old state

by ft to forget and adding it · C̃t for the new candidates scaled by how much the state values

should be updated. The output is the filtered state cell. First, a sigmoid layer decides what

parts to output (ot). This output is multiplied by the cell state after tanh to output only the

relevant parts (Olah, 2015).

2.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) (LeCun et al., 1989) are typically used for processing

data with a spatial structure. The most common processed data is image data which can

be thought of as a multidimensional grid of pixels. A CNN is able to successfully convert

images into a format that is easier to process while capturing the spatial dependencies in an

image. These spatial dependencies are captured by applying relevant filters, so called kernels,

onto the data. This process of applying the kernel over the whole image by sliding over it

is called a convolution. Figure 2.3 depicts an example of a 3 × 3 kernel moving nine times

over a 5× 5 image multiplying each cell with the corresponding value and adding it up. This

results in a 3×3 convolved feature vector. A CNN usually applies several filters to an image.

These filters are typically quadratic and move over the image with a certain stride value. The

stride value sets the distance between each step of the kernel. In the example at hand the

stride value equals one. Typically, the first layer of a CNN captures low-level features such

as edges (horizontal, vertical, corners, etc.). Subsequent layers capture high-level features

such as geometric figures (circles, rectangles etc.), specific forms (eyes, doors etc.), or even

4
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Figure 4: Example of a 5× 5 convolution with a 3× 3 kernel

complex forms (humans, cars etc.). With more and more layers, the network gets a more

thorough understanding of the images (Olah, 2014; Goodfellow et al., 2016).

Typically a CNN consists of three stages. In the first stage it performs several convolutions

to obtain a linear set of activations which are fed into a rectified linear unit (ReLU) activation

in the second stage. Finally, in the third stage a pooling function is used to further modify the

output. The most prominent pooling functions are max pooling (Zhou & Chellappa, 1988)

and average pooling. The former operation returns the maximum output within a rectangular

neighborhood, whereas the latter returns the average from the rectangular neighborhood (see

Figure 5). Pooling aims at making the representation invariant to minor changes in the input.

That means that minor changes in the input do not affect most of the pooled outputs as the

max pooling units are only sensitive to the maximum value in the neighborhood. This

invariance to minor input changes allows the network to detect features even though they do

not appear at the same exact position.

Instead of generating a more abstract and less dimensional representation of the input,

CNNs can also be used to generate or up-sample data from abstract representations. This

is called transposed convolution or fractionally strided convolution or colloquially “deconvo-

lution”. When applying a transposed convolution, the input of the image is stretched by

inserting empty rows and columns (zeroes) and then performing a regular convolution (see

Figure 6) (Géron, 2017).

2.4 Convolutional LSTM

After introducing LSTMs and CNNs, it is important to highlight the convolutional LSTM

(ConvLSTM) network. This is a special LSTM network which is designed to tackle spatio-

temporal problems. The ConvLSTM has convolutional structures (see Subsection 2.3) in
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Figure 6: Transposed convolution from a 3x3 input to a 5x5 output

both the input-to-state, and state-to-state transitions. All the inputs, cell outputs, hidden

states and gates are 3D tensors with the last two dimensions being spatial dimensions (rows

and columns). By these means it is able to simultaneously capture temporal and spatial

variations (Shi et al., 2015).

2.5 Loss Functions

Typically, deep learning algorithms are minimizing a loss function which compares the loss of

the output of the model with the expected output. In the context of future frame prediction

this means the generated next frame (ŷ) is compared to the next ground truth frame (y), both

of size m×n, to produce an error at pixel level. There are numerous different loss functions.

Broadly said, two classes of loss functions can be distinguished, regular deterministic loss

functions such as L1, or the other one using adversarial loss.

The L1 loss function minimizes the absolute differences (S) between the generated frame

and the existing ground truth (Géron, 2017).

S =

m∑
i=1

n∑
j=1

|yij − ŷij |

Adversarial loss is used within a Generative Adversarial Net (GAN) (Goodfellow et al.,

2014) setting, where the generative and the discriminative parts are multi-scale CNNs.
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2.6 Evaluation

When evaluating the prediction quality of a model, the central idea is to measure the difference

from the prediction to the actual ground truth. First, it needs to be clear what a good

prediction actually is. But defining and measuring this can be as complicated as the task of

generating the prediction itself (see Section 6). In literature there are umpteen metrics to

measure the difference between the prediction and the ground truth. A trivial way would be

to use the loss function for the evaluation as well. However, the most frequently used metrics

are mean squared error (MSE) and peak signal-to-noise ratio (PSNR).

The mean squared error measures the average squared difference between the predicted

next frame (ŷ) and the ground truth (y), both of size m× n (Fahrmeir, Heumann, Künstler,

Pigeot, & Tutz, 2016). The closer the images, the lower the MSE. The MSE of two identical

images is 0.

MSE(y, ŷ) =
1

mn

m∑
i=1

n∑
j=1

(yij − ŷij)2

The peak signal-to-noise ratio is typically used to measure the quality of compressed

pictures, whereas mathematically it is just a logarithmic representation of the MSE (Hore &

Ziou, 2010; Winkler & Mohandas, 2008). The closer the images, the higher the PSNR.

PSNR(y, ŷ) = 20 ∗ log10

(
pixelMax /

√
MSE(y, ŷ)

)

7



3 Related Work

Since 2014 more than 40 different architectures of deep models for future frame prediction

have been proposed. This section presents selected future frame models. The selection

is based on outstanding features such as novel approaches or the combination of different

approaches. In addition, the selection includes all models that are dealing with weather fore-

casting using future frame prediction. Table 1 contains an overview of the compared future

frame prediction models. In the following, each model is described with its characteristic

feature and the data it was trained on.

Srivastava et al. (2015): Unsupervised Learning of Video Representations using

LSTMs

This paper is one of the first approaches to successfully predict future frames given a certain

input. The authors developed a LSTM encoder-decoder framework to learn video represen-

tations. A sequence of frames is fed into an Encoder LSTM and then this representation

is decoded by another LSTM. In their experiments, they trained their model on their self-

developed moving MNIST dataset, where two digits are moving within the image. The model

manages to predict a persistent motion for several frames into the future. Furthermore, the

model was trained on three datasets containing human actions, namely UCF-101 dataset

(Soomro, Zamir, & Shah, 2012), HMDB-51 (Kuehne, Jhuang, Garrote, Poggio, & Serre,

2011) and Sports-1M (Karpathy et al., 2014). But instead of directly feeding the pictures

into the model at pixel level, they used a CNN pretrained on ImageNet (Deng et al., 2009) to

extract the RGB features. The predictions of the model capture some basic representations,

but the images are very blurry.

Shi et al. (2015): Convolutional LSTM Network: A Machine Learning Approach

for Precipitation Nowcasting

In their paper Shi et al. applied future frame prediction methods for the first time to weather

forecasting, and precipitation nowcasting in particular. They developed the convolutional

LSTM (ConvLSTM) by extending a fully connected LSTM with convolutional structures in

both the input-to-state and state-to-state transitions. All the inputs, cell outputs, hidden

states, and gates are 3D tensors of which the last two dimensions are the spatial dimensions,

i.e. rows and columns. The ConvLSTM model was first trained and tested on the moving

MNIST dataset (Srivastava et al., 2015) in order to prove the generalization ability. It is able

to predict the overall motion, but the resulting digits are very blurred. The second and main

dataset where the model was trained and tested on is the radar echo dataset. It contains
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three years of weather radar intensities collected in Hong Kong between 2011 and 2013. The

radar data is recorded every six minutes, resulting in 240 frames per day. In order to predict

precipitation, the top 97 rainy days were selected. The intensity values were normalized and

afterwards the radar maps were cropped, re-sized and noise reduced by applying K-means

clustering to the monthly pixel average. The authors compared the ConvLSTM model with

the Real-time Optical flow by Variational methods for Echoes of Radar algorithm (ROVER)

(Woo & Wong, 2014). The algorithm calculates the optical flow of a sequence of radar

maps and solves the semi-Lagrangian advection equation on the flow field in order to make

predictions (Brox, Bruhn, Papenberg, & Weickert, 2004; Bridson, 2008). The results of the

ConvLSTM and ROVER were compared by commonly used precipitation nowcasting metrics:

rainfall mean squared error, critical success index, false alarm rate, probability of detection,

and correlation. The results show that ConvLSTM outperforms ROVER for precipitation

nowcasting. The authors argue that their model is able to handle boundary events better,

such as a sudden agglomeration of clouds at the boundary. If the model has seen this type of

formations and sudden changes before, it can reasonably predict the precipitation. ROVER,

or especially optical flow can hardly achieve that.

Oh et al. (2015): Action-Conditional Video Prediction using Deep Networks in

Atari Games

Oh et al. (2015) introduced two models in order to predict future image frames of Atari

games. As future image frames in games depend on control variables or actions and previous

frames the authors defined it as an action-conditional video modeling problem. The special

feature of this approach is that the actions are utilized in order to predict future frames. The

authors propose a feedforward model by means of a CNN Autoencoder (AE) and a recurrent

model, which consists of a CNN AE and a LSTM. In both approaches they utilize the action-

transformed features. For their data they use the Atari games from the Arcade Learning

Environment (ALE) (Bellemare, Naddaf, Veness, & Bowling, 2013). The experiments show

that the model can even generate realistic frames for over 100 action conditioned time steps.

Klein et al. (2015): A Dynamic Convolutional Layer for Short Range Weather

Prediction

Klein et al. (2015) developed the dynamic convolutional layer which generalizes the convo-

lutional layer in order to make short range weather predictions. In contrast to a ’regular’

convolutional layer, the dynamic convolutional layer receives two inputs, namely the features

maps from the previous layer and the filters. So, instead of constant filters, the dynamic
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convolutional layer uses filters that will vary from input to input. The filters are calculated

by learning a function that maps the input to the filters. The authors use datasets con-

taining radar images taken in Tel Aviv, Israel, Davenport, Iowa and Kansas City, Missouri.

The datasets were split into train, validation and test and contain 32,000 images each on the

training, 4,800 on the validation and 3,200 on the testing set. On the radar images a constant

color transformation function was applied and the authors point out that a simple gray-scale

transformation would not produce desirable results as the colorbar of the radar images is not

monotonic. The authors compared their model with the last frame, linear regression, a global

motion estimator and a regular feedforward CNN. They compare the predictions by means

of the squared Euclidean loss. The dynamic CNN outperforms all baseline methods on all

three datasets.

Mathieu et al. (2015): Deep multi-scale Video Prediction beyond Mean Square

Error

In their paper Mathieu et al. (2015) dealt with the problem of blurry predictions which is

caused by the standard mean squared error (MSE) loss function. MSE tends to produce

blurry frames because the loss responds to the many possible futures by averaging them.

The authors introduced a model utilizing adversarial loss from a GAN setting where the gen-

erative and the discriminative parts are multi-scale CNNs. Furthermore, they also introduced

an image gradient difference loss (GDL) which penalizes the differences of image gradient pre-

dictions in the generative loss function. The authors trained and tested their model with the

different loss functions on the Sports-1M (Karpathy et al., 2014) and the UCF-101 (Soomro

et al., 2012) datasets. When comparing the PSNR and sharpness of the predictions, the

model utilizing adversarial loss combined with gradient difference loss outperforms the other

ones.

Patraucean et al. (2015): Spatio-temporal Video Autoencoder with Differentiable

Memory

The authors introduced a model which consists of a CNN AE, ConvLSTM and optical flow.

At each time step, the model receives the input frame, generates a prediction of the optical

flow based on the current input and the LSTM memory state as a dense transformation map

and applies it to the input to predict the next frame. They trained their model on the moving

MNIST (Srivastava et al., 2015), HMDB-51 (Kuehne et al., 2011), PROST (Santner, Leistner,

Saffari, Pock, & Bischof, 2010) and ViSOR (Vezzani & Cucchiara, 2010) datasets, whereas

the last three datasets contain videos of human actions. Their model achieved the lowest

10



per-pixel average error on moving MNIST compared to other baseline methods, namely CNN

AE, CNN AE + LSTM and CNN AE + ConvLSTM.

Finn et al. (2016): Unsupervised Learning for Physical Interaction through Video

Prediction

Finn et al. (2016) developed three action-conditioned models that predict transformations

on the input pixels for next frame predictions. Their approach allows to distinguish dif-

ferent objects from each other and the background by merging information of appearance

from preceding frames with motion predicted by the model. The appearance and the pre-

dicted motion are merged by setting the motion of pixels relative to the previous frame. The

next frame is generated by applying this motion to the previous one. In order to test their

model the authors introduced the robotic pushing dataset containing 59,000 robot pushing

motions, consisting of 1.5 million frames and the corresponding actions at each point in time.

Furthermore, they also tested their model on the Humans3.6M (Ionescu, Papava, Olaru, &

Sminchisescu, 2013) dataset. Comparing the PSNR and structural similarity (SSIM), the re-

sults of the predictions show that their motion-predictive models quantitatively outperform

the baseline methods FC LSTM and ConvLSTM, and qualitatively produce plausible future

frames for at least ten timesteps. Their results indicate that models that explicitly transform

pixels from preceding frames are able to better capture object motion.

Lotter et al. (2016): Deep Predictive Coding Networks for Video Prediction and

Unsupervised Learning

Lotter et al. (2016) introduced a predictive neural network (PredNet) which is inspired by

the neuroscience literature. The model consists of an encoding CNN, a ConvLSTM and a

decoding CNN, whereas each layer in the network makes local predictions and only forwards

the deviations from those predictions to the subsequent network layers. See Section 4 for a

more detailed description of the model, as this study is based on it. The authors trained

and tested their model on an artificial rotating faces dataset. The dataset consists of 3D

faces randomly rotating at a constant velocity. The authors compared their model to the

baseline methods of copying the last frame and a simpler ConvNet which forwards the pre-

dictions instead of the deviations. In terms of MSE and SSIM the PredNet outperformed

the baselines methods. Applied to more complex real-world scenarios the model was trained

on the KITTI dateset (Geiger, Lenz, Stiller, & Urtasun, 2013) and tested on the CalTech

Pedestrian dataset (Schiele, Dollár, Wojek, & Perona, 2009). Both datasets consist of videos

from a dashboard-mounted camera on a vehicle driving around cities. In terms of MSE and
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SSIM the model outperformed the two baseline methods. Furthermore, although the model

was trained to predict only one frame ahead, the model can predict multiple frames into the

future by recursively feeding the predictions back into the model as inputs. The MSE of

the model’s prediction stayed well below the copying last frame method and increased fairly

linearly.

Shi et al. (2017): Deep Learning for Precipitation Nowcasting: A Benchmark

and A New Model

In this paper Shi et al. (2017) faced the problem of the previous introduced ConvLSTM

model (Shi et al., 2015) which is location-invariant, whereas the weather is location-variant

in general. The local correlation structure of motion patterns like rotating or scaling in

consecutive frames is different for different positions within the frames and at different time

steps. They proposed the Trajectory GRU (TrajGRU) model that is able to learn the local

correlation structure for spatio-temporal data in order to provide very short range forecasts

of rainfall intensity. Furthermore, as the data for precipitation nowcasting is highly imbal-

anced, the authors proposed the balanced mean squarred error (B-MSE) and balanced mean

absolute error (B-MAE) for training and evaluation. These measures assign more value to

heavier rainfalls. The TrajGRU model was trained and tested on the MovingMNIST++ (Shi

et al., 2017) dataset where it outperformed other baseline models such as the ConvLSTM

or Convolutional GRU (ConvGRU) (Ballas, Yao, Pal, & Courville, 2015). Moreover, they

trained and tested the network on the HKO-7 dataset containing radar echo data from 2009

to 2015 collected by the Hong Kong Observatory (HKO). The radar images were taken at

a height of 2km covering a 512km × 512km grid with Hong Kong in its center. The radar

data is recorded every 6 minutes, resulting in 240 frames per day. The images are linearly

transformed to pixel values ranging from 0 to 255 and noise filtered. For training 812 rainy

days were selected, for validation 50 and for testing 131. According to the critical success

index (CSI) and Heidke Skill Score (HSS)(Hogan, Ferro, Jolliffe, & Stephenson, 2010) the

TrajGRU outperformed the ConvLSTM ConvGRU, ROVER and last frame. Additionally,

the results show that the models which are trained with balanced loss outperform the optical

flow based models.

de Bezenac et al. (2017): Deep Learning for Physical Processes - Incorporating

Prior Scientific Knowledge

de Bezenac et al. (2017) developed a model which incorporates physical background knowl-

edge to forecast the sea surface temperature (SST). Their proposed model consists of a CNN
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that predicts a motion field from the input frames. Based on this motion field, a warping

scheme distorts the last input to produce the future frame. The error is calculated using

the Charbonnier penalty function between the predicted frame and the ground truth. Under

specific parameter settings this function equals the l2 loss, but the authors underline the

advantages of the reduction of outlier influence. Multi-frame predictions were obtained by

recursively feeding back the predictions into the model as inputs. The special feature of

the model is the inclusion of physics. The warping mechanism is adapted to the advection-

diffusion principles which are responsible for temperature variation. This fluid transport

problem occurs due to the advection and diffusion of fluids. Furthermore, the authors em-

phasize the possibility to extend the loss function by physical penalty terms. The model was

trained on simulated SST data utilizing the NEMO (Nucleus for European Modeling of the

ocean) engine (Madec et al., 2015). Daily temperatures from 2006 to 2015 were used for

training (80%) and validation (20%). The years 2016 and 2017 were used for testing. The

data is divided into several sub-regions and the daily SST of each sub-region was standardised

using the mean and standard deviation of all available data for each day in order to remove

seasonal effects. By means of MSE, the model was compared to the baseline methods of the

state of the art numerical assimilation model by Béréziat and Herlin (2014), an autoregres-

sive CNN, the ConvLSTM model (Shi et al., 2017) and the multi-scale CNN (Mathieu et al.,

2015). The proposed model by de Bezenac et al. (2017) outperformed all baselines, especially

the NN baselines.

Wichers et al. (2018): Hierarchical Long-term Video Prediction without Super-

vision

Wichers et al. (2018) introduced an unsupervised approach for long-term video prediction.

In comparison to other long-term prediction models, their approach does not require images

with annotated high-level structures such as human joint landmarks. First, their model en-

codes the input frame, discovers high-level features (human pose landmarks). Next, a LSTM

generates a high-level encoding prediction of the landmarks into the future. Finally, a visual

analogy network (VAN) (Reed, Zhang, Zhang, & Lee, 2015) decodes the final predicted image

from the encoded prediction and the last seen frame. The authors trained and tested their

model on an artificial bouncing shapes dataset and compared predictions of 1022 frames into

the future with the model of Finn et al. (2016). The models were compared whether the

shape was still present in the last frames and and if it has the correct color. In comparison

to the other model, the shapes of the model of Wichers et al. (2018) did not disappear and
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had in approximately 97% the right color. The location of the prediction and the ground

truth was not compared as the authors state that it is unrealistic to expect the model to

accurately predict the location after 1000 time steps because of propagating errors. Further-

more, the model was trained and tested on the Human3.6M dataset and compared to the

models of Finn et al. (2016) and Denton and Fergus (2018). According to crowd-sourced

human preference, their model performs most of the times better or at least as well as the

other ones. Additionally they ran a object detection model pretrained on the MS-COCO

dataset (Howard et al., 2017; Lin et al., 2014). They developed a person score indicating

the confidence of the detector to detect whether the frame contains a person. For long-term

predictions their model outperformed the other two baselines. It is important to point out

that their model is able to predict up to 127 frames into the future, which corresponds to a

prediction of up to 20 seconds.

Lee et al. (2018): Stochastic Adversarial Video Prediction

In their paper Lee et al. (2018) combine (a) adversarial losses with (b) latent variational

variable models that model the underlying stochasticity in order to produce naturalistic

high-quality images. Inspired by the work of Denton and Fergus (2018) their model uses

stochastic models for future frame prediction. These models are using the framework of vari-

ational autoencoders (VAEs) which predict possible futures by sampling latent variables. The

predictions of the stochastic adversarial video prediction model were evaluated concerning

realism, diversity and accuracy. Realism is measured by human judges according to a real

vs. fake two-alternative forced choice (2AFC) test. Diversity is calculated by measuring the

average distance between randomly sampled video predictions. This procedure evaluates the

ability of the model to represent different possible futures. The accuracy is measured by cal-

culating PSNR and SSIM. The model was trained and tested on the BAIR action-free dataset

(Ebert, Finn, Lee, & Levine, 2017) containing a robot arm pushing objects and KTH dataset

(Laptev, Caputo, et al., 2004) containing human actions. They compared their model with

other stochastic video prediction models (Babaeizadeh, Finn, Erhan, Campbell, & Levine,

2017; Denton & Fergus, 2018), and modifications of their own model containing only the

adversarial loss or the VAE. The results show that the model with the adversarial loss only

generates realistic but less diverse predictions whereas the model with VAE only generates

less realistic but more diverse predictions. Combining the two together leads to more realistic

and diverse predictions.
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Bihlo (2019): Precipitation nowcasting using a stochastic variational frame pre-

dictor with learned prior distribution

In their paper Bihlo (2019) introduced a stochastic variational frame prediction model based

on the model proposed by Denton and Fergus (2018). The stochastic variational frame pre-

diction model concatinates the CNN decoded image with stochastic information from the

series of previous images obtained from the prior network. This information is then fed

into the ConvLSTM to predict the future frame. The prior model is supposed to learn the

fundamental physical rules how precipitation cells move and evolve in time and space. The

prior model includes a Kullbeck–Leibler (KL) divergence term in its loss. The model was

trained to predict one frame into the future and multi-frame predictions were obtained by

recursively feeding back the predictions into the model as inputs. The model was trained on

radar data obtained on four weather radar stations in Feldkirchen, Patscherkofel, Rauchen-

warth and Zirbitzkogel in Austria. The orignally 1km× 1km grid resolution recorded every

five minutes was downsampled to a 5km× 5km grid every 15 minutes with an image sizes of

160 × 110 pixels. The dataset contains radar images from 2014 to 2018, whereas four years

were used for training and one year for testing. Only images containing at least 10,000 mm/h

precipitation were selected. The authors compared their model with a standard ConvLSTM

network by means of SSIM. For the first two frames the ConvLSTM outperforms their model

but afterwards the stochatistic variational method significantly outperforms the ConvLSTM.

This study

The underlying study adopts a slight modification of the approach proposed by Lotter et al.

(2016). The main difference is the dataset on which the model is trained. The (PredNet) is

trained on weather data from 2015 and 2016 containing the air temperature, surface pressure

and the 500 hPa geopotential. In addition, slight changes were made in the evaluation of

the model. Besides the MSE, also the PSNR was calculated. For a detailed description of

the study setup see Section 4. In comparison to the other future frame prediction models

applied in the context of weather forecasting this study examines how the use of different

input variables affects the predictions.
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Author(s) Model Dataset(s) Data
type

Input
frames

Output
frames

Resolution Loss

Srivastava et al. (2015) LSTM AE

UCF101
HMDB-51
Sports-1M
Moving MNIST

HA
HA
HA
A

16
16
16
10

13
13
13
10

32× 32× 3
224× 224× 3
224× 224× 3
64× 64× 1

CE, L2

Shi et al. (2015) ConvLSTM
Moving MNIST
Radar echo

A
W

10
5

10
15

64× 64× 1
100× 100× 1 CE

Oh et al. (2015) CNN AE, CNN
AE + LSTM

ALE A 20 10 210× 160× 3 L2

Klein et al. (2015) Dynamic CNN Radar images W 4 1 70× 70× 1 Euclidean

Mathieu et al. (2015) Multi-scale CNN
Sports-1M
UCF-101

HA
HA

4
4, 8

1
1, 8

32× 32× 3
32× 32× 3 adv.

Patraucean et al. (2015) CNN AE + Con-
vLSTM + Opti-
cal Flow

Moving MNIST
HMDB-51
PROST
ViSOR

A
HA
HA
HA

1
1
1
1

1
1
1
1

64× 64× 1
na× na× 3
na× na× na
na× na× na

Binary CE

Finn et al. (2016) Dynamic Con-
vLSTM

Robotic pushing
Humans3.6M

R
HA

10
2

10-20
8-18 64× 64× 3 L1, L2, GD

Lotter et al. (2016) CNN + ConvL-
STM

Rotating faces
KITTI
CalTech Pedestrian

A
D
D

10 1-5
64× 64× 1
128× 160× 3
128× 160× 3

L1

Shi et al. (2017) Trajectory GRU
Moving MNIST++
HKO-7

A
W

10
5

10
20

64× 64× 1
480× 480× 1 Balanced

MSE, bal-
anced MAE

de Bezenac et al. (2017) CNN + Warping Sea surface temperature W 4 6 64× 64× 1 L2

Wichers et al. (2018) AE + VAN +
LSTM

Humans3.6M
Bouncing shapes

HA
A

5
3

32-126
16-1022

64× 64× 3
na× na× 1 L2, adv.

Lee et al. (2018) VAE + ConvL-
STM

Robotic Pushing
KTH

R
HA

2
10

10
10

64× 64× 3
64× 64× 3 adv., binary

CE, L1
Bihlo (2019) Stochastic VAE

+ convLST
Radar W 5 10 160× 110× 1 L2, KL

This study CNN + ConvL-
STM

ERA5 reanalysis W 10 1-5 128× 160× 3 L1

Table 1: Comparison of selected future frame prediction models. In the model column AE indicates autoencoder whereas VAE indicates
variational autoencoder. In the data type column HA, A, D and W indicate human action, artificial, driving and weather. In the loss column
CE is cross entropy, adv. is adversarial loss, GD is gradient difference and KL is the Kullback–Leibler divergence.
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4 Study Setup

This section provides a detailed description of the processed weather data, the architecture

of the applied PredNet by Lotter et al. (2016) and how the model was finally trained.

4.1 Data and Data Extraction

As mentioned before, there is a growing amount of data that can be used for weather fore-

casting. In numerical weather prediction predicting the weather is basically a matter of

solving thermodynamic equations, which, however, are always under-determined due to the

large scale width. The temperature at a location is determined by local heat sources and

sinks (e.g. radiation, evaporation, heat transport in the soil or water) and by advection, i.e.

transport of air masses. The transport patterns are complex and very different depending on

the height above the ground. Therefore, it is not at all trivial to deduce air movements from

satellite images, because one has to know what is transported at which altitude.

The idea now is that a well-built deep learning network will be able to learn the transport

patterns contained in the time-dependent, three-dimensional model fields and thus at least

predict large-scale temperature patterns near the ground and their temporal change. For a

successful temperature prediction, suitable variables have to be selected in order to obtain

a representation of the three-dimensional model fields as close as possible. The following

parameters were selected for this purpose, which are interdependent in terms of scale in the

atmosphere:

1. Air temperature: In order to predict the air temperature, this parameter itself is

naturally indispensable. More precisely, it is the air temperature at two meters above

the surface of land, sea or waters (t2). The temperature is measured in kelvin (K) and

by subtracting 273.15 it can be converted to degrees Celcius (◦C) 1.

2. Surface pressure: This parameter is the pressure of the atmosphere adjusted to sea

level. The pressure is the weight of air above the measurement point. More specifically,

the surface pressure is the mean level pressure (msl), which is used to identify low and

high pressure systems (cyclones and anticyclones). It is measured in pascals (Pa) 2.

According to Gay-Lussac’s law an equal volume of gas (such as oxygen, hydrogen or the

1ECMFW (2010). 2 metre temperature. https://apps.ecmwf.int/codes/grib/param-db?id=167. [Online;

accessed 1-July-2019]
2ECMFW (2010). Mean sea level pressure . https://apps.ecmwf.int/codes/grib/param-db?id=151. [On-

line; accessed 1-July-2019]
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atmoshpere of Earth) expands or diminishes the same amount for a given temperature

increase or decrease (Benedict, 1984). This means that the pressure of a constant

volume of gas is proportional to its temperature. This close correlation of the two

parameters qualifies the ground pressure for temperature predictions.

3. 500 hPa geopotential: This parameter can be derived from the geopotential height,

which can be described as the gravity-adjusted height (Mohanakumar, 2008). The 500

hPa geopotential corresponds to the geopotential height that is required to reach the

given pressure. This means that it shows how far one has to go up in the atmosphere

until the pressure will drop to 500 hPa. Hence, in contrast to ground weather maps,

the pressure values are not displayed in a height, but the height of a certain pressure

value. The average height above sea level of the 500 hPa geopotential is 5574 m’. The

movements of the 500 hPa geopotential level have a regulatory effect on the weather

parameters beneath as they roughly move with the winds on the 500 hPa level. High

heights indicate anticyclones whereas low heights indicate cyclones. The same applies

for ridges and troughs 3.

The data described originates from the European Centre for Medium Range Weather Fore-

casts (ECMWF). The ECMWF provides hourly reanalyses data which are regularly retrieved

and archived in the netCDF format at the Jülich Supercomputing Centre (JSC). For the un-

derlying study ERA5 reanalysis data is used which consists of hourly estimates of various

climate variables. The data covers a 31km × 31km grid and by means of data assimilia-

tion systems and highly developed modelling it combines historical observations into global

estimates (Guillory, 2017). Plots of the air temperature, surface pressure and 500 hPa geopo-

tential are illustrated in Figures 7, 8 and 9. The plots are created with Panoply, which is a

tool developed by NASA to plot geo-referenced arrays in formats like netCDF 4.

The ERA5 reanalysis data is staged within the JSC, whereas the described parameters are

selected and extracted. Each original netCDF file for each hour contains around 60 different

parameters and is roughly 3GB large. After the staging process by means of a JUBE script

5 each new netCDF file contains only the air temperature, surface pressure, the 500 hPa

geopotential and some meta information like date, time, lats and lons and is 5MB large.

3ECMFW (2010). Geopotential. https://apps.ecmwf.int/codes/grib/param-db?id=129. [Online; accessed

1-July-2019]
4Panoply. https://www.giss.nasa.gov/tools/panoply/. [Online; accessed 1-July-2019]
5JUBE. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/JUBE2/ node.html.

[Online; accessed 1-July-2019]
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T2

Data Min = 221,4, Max = 314,5, Mean = 287,0

T2 (K)

221,4 240,0 258,6 277,3 295,9 314,5

Figure 7: Plot of air temperature on 25.02.2016 at 6pm.

MSL

Data Min = 95594,9, Max = 104672,4, Mean = 101163,0

MSL (Pa)

95594,9 97410,4 99225,9 101041,4 102856,9 104672,4

Figure 8: Plot of surface pressure on 25.02.2016 at 6pm.
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gph500

Data Min = 4811,5, Max = 5931,6, Mean = 5659,9

gph500 (m)

4811,5 5035,5 5259,5 5483,5 5707,6 5931,6

Figure 9: Plot of 500 hPa geopotential on 25.02.2016 at 6pm.

The final model expects three datasets, namely a train, validation and test set. Each set

has a shape of (n, 10, 128, 160, 3), where n is the number of sequences, 10 the amount of

images in one sequence, 128 and 160 the desired image size in pixels and 3 the number of

channels. In the classical context of computer vision the channels would represent the red,

green and blue (RGB) channels. In the application of this study these channels are now the

selected parameters. Instead of red, green and blue there are the air temperature, surface

pressure and the 500 hPa geopotential now stacked on each other. Therefore, the next step

is to cut the netCDF data to the desired size, stack the parameters on each other, create

according sequences and save them into the train, test and validation set. The resulting data

sets were saved as hickle (hkl) files. It is also possible to combine the variables in other

compositions. This is done and explained in Section 5. As the desired image size is smaller

than the original netCDF files, the weather maps were cut out above Europe. See Figure 10

for three exemplified air temperature plots above Europe at arbitrary points in time. During

the training and testing the data was normalized between 0 and 1. In total, hourly weather

data from 2015 and 2016 were used, which corresponds to a data basis of 17,544 records. For

the training 80% of the data was utilized, 5% for the validation set and 15% for the test set.

The dataflow between the preprocessing, training and evaluation is depicted in Figure 16.
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Figure 10: Three plots of cutouts above Europe at arbitrary points in time with a resolution

of 128 x 160 pixels.

4.2 Model Architecture

The applied model is the slightly modificated PredNet proposed by Lotter et al. (2016). The

model is displayed in Figures 11 and 12 and consists of several repeating layers, whereas

each layer consists of different modules. Figure 11 depicts the information flow within two

layers and Figure 12 reveals a more detailed view of one layer of the model. The network

architecture is inspired by the work of Rao and Ballard (1999) about predictive coding in

neuroscience and the Deep Predictive Coding Networks of Chalasani and Principe (2013).

Briefly, each layer of the model consists of the following four modules: the representation

module Rl, the prediction module Âl, the input convolutional module Al, and the error term

El. The representation layer Rl is a ConvLSTM which generates the t+1 prediction Âl of

the input Al. Subsequently, the error El is generated by subtracting Âl from the target

Al. Then El is split into two parts, a rectified positive and a negative term. After passing

a convolutional layer, El becomes the input Al + 1 for the next layer. Also, Rl receives a

copy of El and the output of Rl + 1. Compared to the intuitive structure of a future frame

prediction model consisting of a convolutional network encoding the images and capturing

the spatial information, a recurrent network capturing the temporal aspect and a generative

network constructing the next frames, Al and El represent the decoding part and El the

temporal and generative part.

In more detail the model processes a sequence of images, xt as described in the following. The

actual images are fed into the lowest target, i.e. At
0 = xt ∀ t, where 0 stands for the lowest

layer. In higher layers (At
l with l > 0) Et

l−1 becomes the input after applying a convolution

over the error units, a rectified linear (ReLU) activation and max-pooling:

At
l = MaxPool

(
ReLU

(
CoNV

(
Et

l−1

)))
For the representation module Rt

l ConvLSTM units are used, introduced by Shi et al. (2015).
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The hidden state of the representation module Rt
l is updated according to Rt

l − 1, Et−1
l and

Rt
l + 1. By means of nearest-neighbor, Rt

l + 1 is upsampled before, because of the pooling in

the forwarding.

Rt
l = CONVLSTM

(
Et−1

l , Rt−1
l , UPSAMPLE

(
Rt

l+1

))
The predictions Ât

l are generated as follows. First Rt
l is convoluted and then followed by a

non-linear ReLU activation. For the final prediction in the lowest layer Ât
l is passed through

a saturating non-linearity, which ensures that the predictions do not exceed the maximum

pixel value of x.

Ât
l = ReLU

(
Conv

(
Rt

l

))
The error term is calculated by subtracting At

l from Ât
l (and vice versa) from each other. It

is split into a positive and negative ReLU-activated error, which in turn are concatenated

again.

Et
l =

[
ReLU

(
At

l − Ât
l

)
; ReLU

(
Ât

l −At
l

)]
The model states are updated in two phases: First, a top-down pass to compute the Rt

l

states and second a forward pass to generate the predictions, error terms and targets. At the

beginning Rl and El are initialized with zero, which explains the initial blank predictions of

the model (see Section 5 for examples). The model is trained to indirectly minimize the L1

error. This is done by minimizing the weighted sum of the error terms. These error terms

consist of a subtraction followed by a ReLU activation, which in turn equals the L1 error.

The hyperparameters are set to a 4 layer model with 3 × 3 kernels for all convolutions

and layer channel sizes for both Al and Rl of (3, 48, 96, 192). The model weights were

optimized using the Adam algorithm (Kingma & Ba, 2014) using a loss with a weight of 1 on

the lowest layer and 0.1 on the upper layers. The initial learning rate was set to α = 0.001

and decreased by a factor of 10 after half of the training. The exponential decay rate for the

first and second moment estimates were set to β1 = 0.9 and β2 = 0.999.

The model is implemented in Python3 using Keras (Chollet et al., 2015) with Tensor-

Flow backend. The training was done using 4 NVIDIA Tesla K80 GPUs on the JURECA

supercomputer of the JSC.

5 Experiments

In the following, the experiments and their results are presented. Section 5.1 presents the

results of the feature testing, where the selection and combination of different variables was
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Figure 11: Illustration of the information flow between two layers within the model. Rl is the

representation module (ConvLSTM), which outputs a prediction Âl at each timestep. The

prediction is compared to the target Al and an error term El is calculated serving as the next

target and the representation module. Adapted from Lotter et al. (2016)
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Figure 12: Detailed view of one layer of the model. Adapted from Lotter et al. (2016)
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tested. Subsequently, Section 5.2 presents the capabilities of the model to predict several

steps into the future.

5.1 Feature Testing

As presented in Subsection 4.1, three variables were selected to train the model, namely the

air temperature, surface pressure and 500 hPa geopotential. The idea is that the selected

variables provide an appropriate representation of the time-dependent, three-dimensional

model fields with that the network can understand and predict the large-scale temperature

patterns near the ground and their temporal change.

When creating data sets it is also possible to create any other combination of variables.

Table 2 shows the combination of the different variables and their evaluation. The model

was trained and tested with each of the variable combinations. In total, hourly weather data

from 2015 was used, which corresponds to a data basis of 8,760 records. For the training 80%

of the data was utilized, 5% for the validation set and 15% for the test set. Each model was

then evaluated using MSE and PSNR and then compared to the MSE and PSNR of the last

seen frame compared to the ground truth of t+ 1. The comparison of the model’s prediction

with the last frame is the simplest comparison of the performance of the model. The easiest

way to predict the weather is to assume that it will be the same in a future point of time as it

is right now. This baseline of the persistence assumption is especially a good benchmark for

short range forecasts as it is the case here. In an hour the temperature will hardly change.

The MSE and PSNR of each model were calculated over the whole sequence of the variables

except of the first one, because the representation and error modules are initialized with zero

at the beginning, which leads to the initial uniform predictions (see Figure 14 for examples).

On the next time steps the prediction is getting better and better after processing more and

more motion information. The farther to the end of the sequence, the better the predictions.

For this reason, in addition to evaluating the model on the basis of the entire sequence, a sole

evaluation of the last prediction of each sequence was also carried out. The results show that

the combination of two times the air temperature and one uniform layer (t2 2) leads to the

best results in terms of the general model MSE and PSNR and especially in terms of the model

MSE and PSNR just from the model’s prediction of the last frame of the sequences. The

model MSE of t2 2 outperforms the persistence assumption of the last frame MSE by 224%.

The model MSE of just the last frame in the sequences outperforms the last frame by even

406%. The model PSNR and the model PSNR of just the last frame outperform the baseline
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by 8.3% and 14,3%. The combinations t2 1 and t2 3 follow in descending order. This means

that the best three combinations of variables are only compositions of temperature. Only in

fourth place is there a combination that also includes the surface pressure (t2 2MSL 1).

After the feature testing another model was trained for the variable combination t2 2 with

more epochs, more samples per epoch, an increased number of sequences for validation and

more data. All in all, hourly weather data from 2015 and 2016 were used, which corresponds

to a data basis of 17,544 records (training 80%, validation 5% and test 15%). The resulting

t2 2Max model MSE and the model MSE of just the last frame outperform the baseline by

295 % and 542% as can be seen in Table 3.

Data Model

MSE

Model

MSE last

frame

Last frame

MSE

Model

PSNR

Model

PSNR

last frame

Last frame

PSNR

t2 1MSL 1gph500 1 5.5 × 10−5 4.0 × 10−5 6.5 × 10−5 42.56 43.95 41.89

t2 3 4.4 × 10−5 3.0 × 10−5 6.5 × 10−5 43.56 45.17 41.89

t2 2 2.9× 10−5 1.6× 10−5 6.5 × 10−5 45.35 47.86 41.89

t2 1 3.5 × 10−5 2.5 × 10−5 6.5 × 10−5 44.53 46.07 41.89

t2 2MSL 1 4.8 × 10−5 3.5 × 10−5 6.5 × 10−5 43.17 44.52 41.89

t2 1MSL 2 5.6 × 10−5 4.1 × 10−5 6.5 × 10−5 42.54 43.83 41.89

t2 2gph500 1 7.0 × 10−5 5.4 × 10−5 6.5 × 10−5 41.52 42.71 41.89

t2 1gph500 2 5.7 × 10−5 4.3 × 10−5 6.5 × 10−5 42.41 43.65 41.89

Table 2: Results of the feature testing. t2 3 stands for three layers of t2 (air temperature).

t2 2MSL 1 stands for two layers of t2 and one layer of MSL (surface pressure). On the

contrary t2 1MSL 2 stands for one layer of t2 and two layers of MSL. The same applies for

the combination of t2 and gph500 (500 hPa geopotential).

Data Model MSE Model MSE

last frame

Last frame

MSE

Model PSNRModel PSNR

last frame

Last frame

PSNR

t2 2Max 2.2× 10−5 1.2× 10−5 6.5 × 10−5 46.53 49.09 41.89

Table 3: Results of t2 2 with maxed out parameters for training.
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Figure 13: MSE of fine-tuned t2 2Max t + 5 model predictions as a function of number of

time steps ahead predicted.

5.2 Multistep Prediction

Although the models were trained to predict only one frame into the future, it is also possible

to predict several frames into the future, by recursively feeding back the predictions as inputs.

For the training the already trained weights from t2 2Max were used. Then the model was

trained and fine-tuned with a loss over 15 time steps. For the first ten time steps the actual

frames serve as input and for the last five time steps the model’s predictions. The training

loss was as usual calculated on the activations of the error module El for the first ten time

steps. For the last five times steps the loss was calculated directly as the mean absolute

error between the prediction and the ground truth frames. By fine-tuning the model for

extrapolations, the results, although less significant, still exceed the baseline as can be seen

in Table 4 and Figure 13. Figure 15 shows that although the results contain slightly blurriness,

the model still captures the key structures in its extrapolations.

Model MSE Model

MSE t+5

Last frame

MSE

Last frame

MSE t+5

Model

PSNR

Model

PSNR t+5

Last frame

PSNR

Last frame

PSNR t+5

2.9× 10−5 76.8× 10−5 6.4 × 10−5 83.3× 10−5 45.34 31.14 41.91 30.79

Table 4: Results of t2 2Max fine-tuned for t+ 5 extrapolations.
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Figure 14: Temperature predictions of the t2 2Max network for a cutout above Europe. The

first rows display the ground truth (actual) and the second rows display the predictions.
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Figure 15: Extrapolation sequences by feeding t2 2Max predictions back into the model. Left of the orange line are the normal t+1 predictions.

Right of the orange line are the predictions generated by recursively using the predictions as input. The first rows display the ground truth

(actual) and the second rows display the predictions.
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6 Discussion

This section interprets the results of the experiments, critically examines the chosen approach

and points out possible improvements. Finally, by reviewing current literature the integra-

tion of physical modeling within machine learning is discussed including its challenges and

opportunities.

As the results show, the selected model can make better hourly and even several-hour

predictions than the persistence assumption. This finding supports the assumption that the

combination of sufficiently available data, current machine learning methods and powerful

computers can be an alternative to classical NWP models. An essential finding of this study is

that the choice of variables has a big influence on the results. Contrary to the assumption that

a greater variety of data provides better results, the experiments show that fewer variables

provide better results. The limitation to air temperature as input variables to predict the air

temperature itself shows the best results. Interestingly, even the number of the variable air

temperature for the input channels has an impact. If all three channels are equipped with

air temperature, the performance is worse than with only one channel (and the remaining

two channels containing uniform information). But it works best with two channels of air

temperature (and one with uniformly distributed information). After that, the combination

of two times air temperature and one time surface pressure works best. Only after that comes

the combination of all three variables. Compared to the good results for the hourly forecast,

the results of the several-hour forecast are more moderate. The performance of the model

still exceeds the baseline, captures the key structures in its extrapolations with no parts of

the predicted frames disappearing unexpectedly or frames washing out. But the resulting

predictions show more blurriness than the hourly predictions and the MSE of the model and

the baseline are close together.

In the critical examination of the chosen approach there are some points that could be

optimized. In general, more data could be used as this study utilized only two years. All other

models presented that deal with weather forecasts have used several years of data for training.

Other applications have worked with even more extensive amounts of data. In a next step,

typical daily and seasonal temperature variances could be included when training the model.

The model could, for example, be trained on hourly time steps of 12 or 24 in order to predict

the next frame. If all other parameters are stable, it could be investigated which cycles are

best suited. With multistep prediction, considerably more tests could be performed. It would

be interesting to see if the inclusion of the surface pressure and 500 hPa geopotential have a
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positive influence on the longer predictions. Furthermore, there are optimization possibilities

for the model itself. The model was trained with the original hyperparameters (number of

layers, kernel size, number of channels per layer) and not re-optimized for the weather data.

A random hyperparameter search could be performed based on the best performance on the

validation set.

However, it is not trivial to measure the performance of a model. This concerns not only

the measurement of the results but also the selection of a suitable loss function. There are

two important underlying questions: (i) What do we actually want to predict and (ii) what

is a good prediction?

The first question is concerned with whether we want to predict the actual future or a

possible future and subsequently deals with what loss function to use. Broadly said, two

classes of models can be distinguished, one using regular deterministic loss functions such

as L1, and the other one using adversarial loss. Models utilizing regular loss functions aim

at predicting the actual future. Sometimes this comes with the disadvantage of blurred

predictions in order to respond to the many possible futures (Mathieu et al., 2015). Models

which are using adversarial loss consistently produce sharper and realistic predictions for

the human eye but they might not represent the actual future. Especially, when predicting

longer into the future, a setting incorporating adversarial loss produces realistic images. But

these long term predictions might have nothing to do with the reality and are not even

compared with the ground truth. When for instance making predictions of long term human

movement into the future, the results are evaluated by other humans or object detection

networks (Wichers et al., 2018). In the context of weather forecasting it is most important

to make predictions that are as close as possible to what actually happens, hence regular

loss functions are advantageous. But it might still be interesting to examine the application

of an adversarial loss or the combination of an adversarial loss with a regular loss. Another

promising approach for temperature forecasting is to include physical penalty terms in the

calculation of the loss, such as divergence, magnitude and smoothness (de Bezenac et al.,

2017). For precipitation nowcasting other authors introduced a balanced loss to deal with

the imbalanced challenge of less occuring heavier rainfall which has a high real world impact

(Shi et al., 2017).

The second question generally refers to what constitutes a good prediction at all. In

general, it is not trivial to evaluate predictions. There are many different scores. The most

commonly used scores are MSE and PSNR, which ultimately indicate the pixel wise difference
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in different ways. But what makes a good prediction? It would be optimal of course, if the

prediction was completely equal to the ground truth. But what about a prediction whose

objects and contours are correct but slightly shifted? Is that generally bad or is it at least a

good start? In weather forecasts, this problem becomes much more concrete. For example,

what if the network predicts a rain shower that is 100km off? Even in meteorology there

is no consensus on how best to address this problem. Papers dealing with precipitation

nowcasting utilize application-specific weather forecasting metrics (Shi et al., 2017; Hogan

et al., 2010). The authors evaluate the predictions by means of skill scores with multiple

thresholds corresponding to different rainfall levels. Within the field of future frame prediction

and especially in the subcategory of weather forecasting, there are no uniform benchmarks

such as in object tracking (Wu, Lim, & Yang, 2013) and object segmentation (Perazzi et al.,

2016), yet. Therefore, the authors have established their own benchmark against which future

papers for precipitation nowcasting can measure themselves. Such a benchmark would also

be very useful for temperature forecasting. So far only one other paper has dealt with (sea

surface) temperature forecasting (de Bezenac et al., 2017), but for future papers an existing

benchmark could be a good guideline. Similar to precipitation forecasting, temperature

foreceasting also has unique properties as weather maps are a different type of data that also

require an adapted evaulation process. Furthermore, de Bezenac et al. (2017) compare their

temperature predictions with state of the art NWP models (Béréziat & Herlin, 2014; Vallis,

2017; Tr’emolet, 2006). For the underlying study and future ones in the field of future frame

prediction of air temperature, the results should also be compared to state of the art NWP

models.

One of the main challenges in applying deep learning approaches to the complex Earth

system science problems is the inherent uncertainty of world dynamics. To some degree all

paper dealing with future frame prediction in the weather context include or try to emulate

physical rules or phenomena.

Bihlo (2019) applies a future frame prediction model that learns a prior model of un-

certainty to the context of precipitation nowcasting (Denton & Fergus, 2018). Denton and

Fergus (2018) combine a learned prior with a deterministic estimate of the future frame.

They face the challenge of highly uncertain situations like a ball bouncing on the ground that

then follows a random trajectory due to a possibly uneven ground. The learned prior is used

as a predictive model for uncertainty. Until the ball hits the ground, a deterministic model

is sufficient and the learned prior will only predict a low uncertainty but afterwards the prior
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will predict a high variance event. The model is trained to estimate a latent space prior

distribution for each time step based upon previous frames. When applied to precipitation

nowcasting the model is expected to learn meaningful stochastic information of the future

frame that would not be included in a deterministic prediction model. These stochastic in-

formation would correspond to basic physical rules to which precipitation cells develop and

move in space and time.

de Bezenac et al. (2017) force a more direct approach to incorporate physical background

knowledge in order to forecast the sea surface temperature. The authors point out that

changes in temperature are caused by fluid transport, i.e. the advection and diffusion of fluids.

During advection, a conserved quantity is transported by a fluid and during a diffusion it

spreads out. Their model consists of two parts, first a prediction component which predicts a

motion field. The second component is a warping scheme that distorts the last input according

to the motion field, in order to produce the future frame. The motion field corresponds to a

velocity field advecting the temperatures. Their model seems to conserve temperatures better,

as well as capturing the dynamics without predictions blurring out. They also compare

their model to the ConvLSTM (Shi et al., 2017) which is used as a part for the applied

PredNet in this study (Lotter, Kreiman, & Cox, 2015) (see Subsection 4.2). The results of

the ConvLSTM seem to not preserve the temperature as the predictions are more blurred.

The authors point out that the model partly has functions of an optical flow prediction

as their advection equation equals the Brightness Constancy Constraint Equation (BCCE),

which is a classical method for calculating optical flow. Additionally, they state that other

papers that incorporate optical flow or a similar transformation (Patraucean et al., 2015;

Finn et al., 2016) do not allow to introduce prior knowledge. Optical flow also lacks in

predicting boundary events (Shi et al., 2015). In precipitation nowcasting this might be a

sudden cloudburst and in temperature forecasting it might be a blizzard.

Replicating physical laws and conservation principles by computing their motion seems

to be a promising approach in the weather context. Furthermore, with regard to the papers

dealing with weather forecasts in the field of future frame prediction, it can be said that

theory-driven physics and data-driven application of machine learning could complement

each other well. Theory-driven approaches are directly interpretable, whereas data-driven

approaches are highly flexible when dealing with a non-linear and multi-scale environment

(Reichstein et al., 2019; de Bezenac et al., 2017; Cressie & Wikle, 2015; Gardner & Dorling,

1998).
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On the basis of existing data and by means of advancing deep learning models, good

predictions can already be made. The data and its preparation play a special role. Like

the individual channels of processed RGB images in the field of computer vision, weather

maps are also two-dimensional data fields with certain variables. Here, it is air temperature,

surface pressure and the 500 hPa geopotential. Several images combined will result in a

video. But apart from the similarities there are also fundamental differences. Due to the

multimodal problem of the Earth system, much more than three channels could be taken

into consideration, for instance variables beyond the visible range or variables with deviating

statistical properties. Moreover, the data volume and size is much higher than in typical

CV applications. The original netCDF files have a size of 1200 × 601 pixels (longitude

and latitude) while most models typically deal with images of approximately 64 × 64 to

256× 256 pixels. These big datasets require a higher computational demand. Another issue

of the multimodality is that the Earth system is often underconstrained, meaning that the

unknowns outnumber the equations. A trained model could perform well on the validation

and even test set but when applied to more recent data the predictions could deviate strongly

(Reichstein et al., 2019).

7 Conclusion

This study was undertaken with the goal to examine the potential of deep learning future

frame prediction methods applied to weather forecasting. The main focus of the work was

to test which variables or which combination of variables is best suited to predict the air

temperature over Europe. The tested variables are the air temperature itself, surface pressure

and the 500 hPa geopotential.

The main finding of the experiments is that the selected neural network can make better

hourly and even several-hour predictions than the persistence assumption. An important

finding of the experiments is that adding more variables does not necessarily lead to better

results. The combination of two times air temperature (and one time uniformly distributed

information) provides the best results and exceeds the baseline of the persistence assumption

by far compared by MSE and PSNR. Furthermore, it can be noted that it is also possible

to predict several steps into the future with the chosen approach by recursively using the

predictions as input, but the results are more moderate compared to the t+1 predictions. The

results support the assumption that the combination of sufficiently available data, current

machine learning methods and powerful computers can be a supplement or alternative to
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classical NWP models. A critical look at the chosen approach indicates that by including

more data (instead the here used 2 years), the consideration of seasonal and daily variations

in training and a random hyperparameter search for the weather data the results could be

even improved.

An essential insight for this work and for future work is that it is imperative to include

physical background knowledge in deep learning methods applied to weather forecasting.

Starting with the data selection, over the data preparation up to the selection of a fitting

model with suitable training and evaluation of the weather data. The correct data must be

selected and adapted to each other in order to process them together. The range of existing

future frame prediction models is wide and when choosing a model one has to pay attention

to what exactly should be predicted and how to properly evaluate it. Future work can follow

up on promising approaches that incorporate physics by learning a prior model of uncertainty

(Bihlo, 2019) or training the model to predict motion fields corresponding to the advection

and diffusion of fluids (de Bezenac et al., 2017). Since the research field for future frame

predictions for weather forecasts and especially for air temperature is very young, it would

be very useful to create a benchmark against which future researchers can measure their

results.
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Finn et al. (2016) https://github.com/tensorflow/models/tree/master/research/video prediction

Lotter et al. (2016) https://github.com/coxlab/prednet

Shi et al. (2017) https://github.com/sxjscience/HKO-7

de Bezenac et al. (2017) https://github.com/emited/flow

Wichers et al. (2018) https://github.com/brain-research/long-term-video-

prediction-without-supervision

Lee et al. (2018) https://alexlee-gk.github.io/video prediction/

Bihlo (2019) na

This study https://github.com/severin1992/airtemprednet

Table 5: Links to the code of the selected future frame prediction models.

B Dataflow
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DataflowMasterthesisShort

Data extraction

Judac fileserver:
- ERA5 reanalyis data

- Format: netCDF

Parallel met data extractor
JUBE script

- Stage ERA5 data
- Calculate 500 hPa
geopotential height

Jureca server:
- Staged ERA5 reanalyis

data
- Format: netCDF

process_netCDF.py
- Extract data over Europe

- Convert to train, val &
test

Jureca server:
- Preprocessed data
- Format: hickle (hkl)

Train & evaluate

train.py
- train PredNet on ERA5

reanalysis data

data_utils.py
- Normalize data

- Create sequences for
input into PredNet

prednet.py
- Architecture of PredNet

Model Data:
- prednet_model.json

- prednet_weights.hdf5

evaluate.py
- Evaluate trained PredNet

on ERA5 reanalysis data
- Calculate MSE & PSNR

- Plot predictions

data_utils.py prednet.py

Results:
- prediction_scores.txt

- prediction plots

F
ig

u
re

1
6:

D
ata

fl
ow
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,
train
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